El polinomio caracteristico de un matriz es $$ \begin{equation*} p(\lambda) = c_{0} \lambda^{n} + c_{1} \lambda^{n-1} + c_{2} \lambda^{n-2} + \dots + c_{n-1} \lambda + c_{n} \end{equation*} $$
function Leverrier_Faddeev(A)
I = 1 // matriz identidad
c[0] = 1
B[0] = I
for k=1 to n-1 do
c[k] = - 1/k * traza(A * B[k-1])
B[k] = A * B[k-1] + c[k] * I
end for
c[n] = - 1/n * traza(A * B[n-1])
determinante = (-1)^n * c[n]
if c[0]!=0
inversa = -1/c[n] * B[n-1]
else
inversa = 'No tiene inversa'
end if
mostrar c, determinante, inversa
end function
Determinar el polinomio caracteristico de \( A \) $$ \begin{equation*} A = \begin{bmatrix} 3 & 1 & 5 \\ 3 & 3 & 1 \\ 4 & 6 & 4 \end{bmatrix} \end{equation*} $$
Iniciando valores $$ \begin{align*} c_{0} &= 1 \\ B_{0} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{align*} $$
Bucle 1 $$ \begin{align*} c_{1} &= -\frac{1}{1} \ \mathrm{tr}(A B_{0}) = -\frac{1}{1} (10) = -10 \\ B_{1} &= AB_{0} + c_{1} I = \begin{bmatrix} 3 & 1 & 5 \\ 3 & 3 & 1 \\ 4 & 6 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -7 & 1 & 5 \\ 3 & -7 & 1 \\ 4 & 6 & -6 \end{bmatrix} \end{align*} $$
Bucle 2 $$ \begin{align*} c_{2} &= -\frac{1}{2} \ \mathrm{tr}(A B_{1}) = -\frac{1}{2} (-8) = 4 \\ B_{2} &= AB_{1} + c_{2} I = \begin{bmatrix} 3 & 1 & 5 \\ 3 & 3 & 1 \\ 4 & 6 & 4 \end{bmatrix} \begin{bmatrix} -7 & 1 & 5 \\ 3 & -7 & 1 \\ 4 & 6 & -6 \end{bmatrix} + \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 26 & -14 \\ -8 & -8 & 12 \\ 6 & -14 & 6 \end{bmatrix} \end{align*} $$
Calculando \( c_{3} \) $$ \begin{align*} c_{3} &= -\frac{1}{3} \ \mathrm{tr}(A B_{2}) = -\frac{1}{3} (120) = -40 \end{align*} $$
El polinomio caracteristico es $$ \begin{equation*} p(\lambda) = c_{0} \lambda^{3} + c_{1} \lambda^{2} + c_{2} \lambda + c_{3} = \lambda^{3} - 10 \lambda^{2} + 4 \lambda - 40 \end{equation*} $$
El determinante es $$ \begin{equation*} \det(A) = (-1)^{3} c_{n} = (-1)^{3} (-40) = 40 \end{equation*} $$
Su inversa es $$ \begin{equation*} A^{-1} = -\frac{1}{c_{n}} B_{2} = -\frac{1}{-40} \begin{bmatrix} 6 & 26 & -14 \\ -8 & -8 & 12 \\ 6 & -14 & 6 \end{bmatrix} = \begin{bmatrix} 0.15 & 0.65 & -0.35 \\ -0.20 & -0.20 & 0.30 \\ 0.15 & -0.35 & 0.15 \end{bmatrix} \end{equation*} $$
import numpy as np
def Leverrier_Faddeev(A):
m, n = A.shape
I = np.eye(n)
B = np.zeros((n+1,n,n))
c = np.zeros(n+1)
c[0] = 1.0
B[0] = I
for k in range(1,n):
c[k] = - 1/k * np.trace(np.dot(A,B[k-1]))
B[k] = np.dot(A,B[k-1]) + c[k]*I
c[n] = - 1/n * np.trace(np.dot(A,B[n-1]))
determinante = (-1)**n * c[n]
if c[0]!=0:
inversa = -1/c[n] * B[n-1]
else:
inversa = np.zeros((n,n)) * np.nan
print('p(x) =', c)
print('determinante =', determinante)
print('inversa =')
print(inversa)
A = np.array([[3,1,5],
[3,3,1],
[4,6,4]], float)
Leverrier_Faddeev(A)
p(x) = [ 1. -10. 4. -40.]
determinante = 40.0
inversa =
[[ 0.15 0.65 -0.35]
[-0.2 -0.2 0.3 ]
[ 0.15 -0.35 0.15]]
#revisando
print('p(x) =', np.poly(A))
print('determinante =', np.linalg.det(A))
print('inversa =')
print(np.linalg.inv(A))
p(x) = [ 1. -10. 4. -40.]
determinante = 40.0
inversa =
[[ 0.15 0.65 -0.35]
[-0.2 -0.2 0.3 ]
[ 0.15 -0.35 0.15]]
B = np.array([[1,-4,-1,-4],
[2,0,5,-4],
[-1,1,-2,3],
[-1,4,-1,6]],float)
Leverrier_Faddeev(B)
p(x) = [ 1. -5. 9. -7. 2.]
determinante = 2.0
inversa =
[[ 1. -1. -4. 2. ]
[ -0.5 -4. -11. 2.5]
[ -0. 3. 8. -2. ]
[ 0.5 3. 8. -1.5]]
#revisando
print('p(x) =', np.poly(B))
print('determinante =', np.linalg.det(B))
print('inversa =')
print(np.linalg.inv(B))
p(x) = [ 1. -5. 9. -7. 2.]
determinante = 2.0
inversa =
[[ 1. -1. -4. 2. ]
[ -0.5 -4. -11. 2.5]
[ -0. 3. 8. -2. ]
[ 0.5 3. 8. -1.5]]
C = np.array([[0.01,0,0,0,0],
[0,0.01,0,0,0],
[0,0,0.99,0,0],
[0,0,0,100,0],
[0,0,0,0,10000]],float)
Leverrier_Faddeev(C)
p(x) = [ 1.00000000e+00 -1.01010100e+04 1.01020102e+06 -1.01020099e+06 1.99010181e+04 1.05845976e+01]
determinante = -10.5845976024
inversa =
[[ -9.35323058e+02 -0.00000000e+00 -0.00000000e+00 -0.00000000e+00 -0.00000000e+00]
[ -0.00000000e+00 -9.35323058e+02 -0.00000000e+00 -0.00000000e+00 -0.00000000e+00]
[ -0.00000000e+00 -0.00000000e+00 -9.44941026e+00 -0.00000000e+00 -0.00000000e+00]
[ -0.00000000e+00 -0.00000000e+00 -0.00000000e+00 -9.52868576e-02 -0.00000000e+00]
[ -0.00000000e+00 -0.00000000e+00 -0.00000000e+00 -0.00000000e+00 4.25900631e-03]]
#revisando
print('p(x) =', np.poly(C))
print('determinante =', np.linalg.det(C))
print('inversa =')
print(np.linalg.inv(C))
p(x) = [ 1.00000000e+00 -1.01010100e+04 1.01020102e+06 -1.01020099e+06 1.99009999e+04 -9.90000000e+01]
determinante = 99.0
inversa =
[[ 1.00000000e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 0.00000000e+00 1.00000000e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 1.01010101e+00 0.00000000e+00 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e-02 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e-04]]