Primera derivada $$ \begin{equation} f'(x) = \frac{1}{x_{0} - x_{1}} f(x_{0}) + \frac{1}{x_{1} - x_{0}} f(x_{1}) \tag{2} \end{equation} $$
Primera derivada $$ \begin{equation} f'(x) = \frac{2 x - (x_{1} - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) - \frac{2 x - (x_{0} - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{2 x - (x_{0} - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} f(x_{2}) \tag{3} \end{equation} $$
Segunda derivada $$ \begin{equation} f''(x) = \frac{2}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) - \frac{2}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{2}{(x_{2} - x_{0})(x_{2} - x_{1})} f(x_{2}) \tag{4} \end{equation} $$
Primera derivada $$ \begin{equation*} f'(x) = \frac{3 x^{2} - 2 x (x_{1} + x_{2} + x_{3}) + x_{1} (x_{2} + x_{3}) + x_{2} x_{3}}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} f(x_{0}) + \frac{3 x^{2} - 2 x (x_{0} + x_{2} + x_{3}) + x_{0} (x_{2} + x_{3}) + x_{2} x_{3}}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} f(x_{1}) + \frac{3 x^{2} - 2 x (x_{0} + x_{1} + x_{3}) + x_{0} (x_{1} + x_{3}) + x_{1} x_{3}}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} f(x_{2}) + \frac{3 x^{2} - 2 x (x_{0} + x_{1} + x_{2}) + x_{0} (x_{1} + x_{2}) + x_{1} x_{2}}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} f(x_{3}) \end{equation*} $$
Segunda derivada $$ \begin{equation*} f''(x) = \frac{2[3 x - (x_{1} + x_{2} + x_{3})]}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} f(x_{0}) + \frac{2[3 x - (x_{0} + x_{2} + x_{3})]}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} f(x_{1}) + \frac{2[3 x - (x_{0} + x_{1} + x_{3})]}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} f(x_{2}) + \frac{2[3 x - (x_{0} + x_{1} + x_{2})]}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} f(x_{3}) \end{equation*} $$
Tercera derivada $$ \begin{equation*} f'''(x) = \frac{6}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} f(x_{0}) + \frac{6}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} f(x_{1}) + \frac{6}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} f(x_{2}) + \frac{6}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} f(x_{3}) \end{equation*} $$